Azure, Azure Data Factory, Azure SQL DB, Microsoft Technologies, PowerShell

Thoughts on Unique Resource Names in Azure

Each resource type in Azure has a naming scope within which the resource name must be unique. For PaaS resources such as Azure SQL Server (server for Azure SQL DB) and Azure Data Factory, the name must be globally unique within the resource type. This means that you can’t have two data factories with the same name, but you can have a data factory and a SQL server with the same name. Virtual machine names must be unique within the resource group. Azure Storage accounts must be globally unique. Azure SQL Databases should be unique within the server.

Since Azure allows you to create a data factory and a SQL server with the same resource name, you may think this is fine. But you may want to avoid this, especially if you plan on using system-defined managed identities or using Azure PowerShell/CLI. And if you aren’t planning on using these things, you might want to reconsider.

I ran into this issue of resources with the same name in a client environment and then recreated it in my Azure subscription to better understand it.

I already had a data factory named adf-deploydemo-dev so I made an Azure SQL server named adf-deploydemo-dev and added a database with the same name.

A data factory named adf-deploymentdemo-dev, a SQL Server named adf-deploymentdemo-dev, and a database named adf-deploymentdemo-dev
A data factory, a SQL Database, and a SQL Server all with the same name in the same region and same resource group

Azure Data Factory should automatically create its system-assigned managed identity. It will use the resource name for the name of the service principal. When you go to create a linked service in Azure Data Factory Studio and choose to use Managed Identity as the authentication method, you will see the name and object ID of the managed identity.

Managed identity name: adf-deploymentdemo-dev. Managed identity object ID: 575e8c6e-dfe6-4b5f-91be-40b0f0b9643b
Information shown in my data factory when creating a linked service for a storage account.

For the Azure SQL Server, we can create a managed identity using PowerShell. The Set-AzSqlServer cmdlet has an -AssignIdentity parameter, which creates the system-assigned managed identity.

Executing PowerShell command: Set-AzSqlServer -AssignIdentity -ResourceGroupName 'ADFDemployDemoDev' -ServerName 'adf-deploydemo-dev'
Executing the PowerShell command to create a managed identity

If you use Get-AzSqlServer to retrieve the information and assign the Identity property to a variable, you can then see the system-assigned managed identity and its application ID.

Executing PowerShell command: $S = Get-AzSqlServer -ResourceGroupName 'ADFDemployDemoDev' -ServerName 'adf-deploydemo-dev'
The results show principalID, Type, and TenantID
Verifying the managed identity is in place for an Azure SQL server.

Now when I look in Active Directory, I can see both managed identities have the same name but different application IDs and object IDs.

Two managed identities in AAD, both called adf-deploymentdeo-dev.
Two managed service principals used for managed identities that have the same name but different IDs

Everything is technically working right now, but I have introduced some needless ambiguity that can cause misunderstandings and issues.

Let’s say that I want to grant the Storage Blob Data Reader role to my data factory. I go to the storage account, choose to add a role assignment, select the role, and then go to add members. This is what I see:

The user interface to select members to add to a role assignment shows users and service principals by name, so ti contains two objects named adf-deploydemo-dev
Which managed identity belongs to the data factory?

Or let’s say that I use PowerShell to get lists of resources by name. I may be locating resources to add tags, add a resource lock, or move the resource to another region or resource group.

Executing PowerShell command Get-AzResource - Name 'adf-deploydemo-dev' | ft
Getting resources by name returns all three resources

If I don’t specify the resource type, I will get my data factory, my database, and my server in the results. You may be saying “Well, I would always specify the type.” Even if that is true, are you sure all coworkers and consultants touching your Azure resources would do the same?

Why introduce this ambiguity when there is no need to do so?

There are some good tips in the Cloud Adoption Framework in Microsoft Docs about naming conventions. Your organization probably wants to decide up front what names are acceptable and then use Azure Policy as well as good processes to ensure adherence to your defined conventions. And if I were the consultant advising you, I would suggest that resources within your tenant be unique across resource types. The suggestion in Docs is to use a resource type abbreviation at the beginning of your resource name. That would avoid the issue I have demonstrated above. Naming conventions should be adjusted to your organization’s needs, but the ones suggested in Docs are a good place to start if you need some help. It is beneficial to have some kind of resource naming convention beyond just whatever is allowed by Azure.

Azure, Microsoft Technologies, PowerShell, SQL Server

Using Azure Automation to Shut Down a VM only if a SQL Agent Job is Not Running

I have a client who uses MDS (Master Data Services) and SSIS (Integration Services) in an Azure VM. Since we only need to execute the SQL Agent job that runs the SSIS packages infrequently, we shut down the VM when it is not in use in order to save costs. We wanted to make sure that the Azure VM did not shut down when a specific SQL Agent job was still running, so I tackled this with some PowerShell runbooks in Azure Automation.

I split the job into two parts. The first runbook simply checks if a specified SQL Agent job is running and returns a text value that indicates whether it is running. A parent runbook checks if the VM is started. If the VM is started, it calls the child runbook to check if the job is running, and then shuts down the VM if the job is not running.

It’s fairly easy and convenient to have nested PowerShell runbooks in Azure Automation. There are two main ways to call a child runbook.

  1. Inline execution
  2. Using the Start-AzureRmAutomationRunbook cmdlet

It was less obvious to me how to call a child runbook when the parent runs in Azure and the child runs on a hybrid worker, especially when you need to use the output from the child runbook in the parent. A hyrid runbook worker allows us to access resources that are behind a VNET or on premises.

Travis Roberts has a nice video on just this topic that gave me the answers I needed.

Below is my parent runbook.

# Ensures you do not inherit an AzureRMContext in your runbook
Disable-AzureRmContextAutosave –Scope Process

$connection = Get-AutomationConnection -Name AzureRunAsConnection
Connect-AzureRmAccount -ServicePrincipal -Tenant $connection.TenantID `
-ApplicationID $connection.ApplicationID -CertificateThumbprint $connection.CertificateThumbprint


$AzureContext = Select-AzureRmSubscription -SubscriptionId $SubID
'Check if VM is on'
$vm=((Get-AzureRmVM -ResourceGroupName $rgName -AzureRmContext $AzureContext -Name $vmName -Status).Statuses[1]).Code
 if ($vm -eq 'PowerState/running')
        #if VM running call other runbook
        start-sleep -Seconds 60;
        'Check if job is running'
        $JobRunning = start-azureRMautomationrunbook -AutomationAccount 'ProgramsAutomation' -Name 'CheckRunningSQLJob' -ResourceGroupName $rgName -AzureRMContext $AzureContext -Runon 'Backups' -Wait;
        Write-Output $JobRunning
    } Until ($JobRunning -eq 'run0')
    'Stopping VM'
    stop-azurermvm -Name $VMname -ResourceGroupName $RgName -force

The runbook sets the Azure context to the appropriate subscription (especially important when you are a guest user in someone else’s tenant). Then it checks if the VM is started. If it is, it goes into a do-while loop. This task isn’t super time sensitive (it’s just to save money when the VM isn’t in use), so it’s waiting 60 seconds and then calling the child runbook to find out if my SQL Agent job is running. This makes sure that the child runbook is called at least once. If the result is that the job is not running, it stops the VM. If the job is running, the loop starts over, waiting 60 seconds before checking again. This loop is essentially polling the job status until it sees that the job is completed. One thing to note is the -Wait parameter on the end of that Start-AzureRmAutomationRunbook command. If you don’t specify the -Wait parameter, the command will immediately return a job object. If you specify the -Wait parameter, it waits for that child job to complete and returns the results of that job.

And here is my child runbook.


$SQLJobName = 'MySQLAgentJobName'
$SQLInstanceName = 'MySQLServer

$cred=Get-AutomationPSCredential -Name 'mycredential'
$server = Connect-DbaInstance -SqlInstance $SQLInstanceName -SqlCredential $cred
Get-DbaRunningJob -SqlInstance $server | Get-DbaRunningJob

$JobStatus = (Get-DbaRunningJob -SqlInstance $server).Name -match $SQLJobName

If ($JobStatus -ne $false) 
#job is running. Passing back a string because bits and ints were causing issues.
    $JobRunning = 'run1'
    Write-Output $JobRunning 
#job is idle
    $JobRunning = 'run0'
    Write-Output $JobRunning 

I’m using dbatools to check if the job is running on the server. That is the Get-DBARunning Job command. The important part to note is that you have to use the Write-Output command for this output to be available to the parent runbook. I got some weird results when I tried to return an int or a boolean (it was returning an object rather than a single value), so I just went with a string. The string, while not the most efficient, works just fine. If you understand why this is, feel free to leave me a comment.

These runbooks have been in place for a couple of months now, and they are working great to shut down the VM to save money while making sure not to disturb an important SQL Agent job that might occasionally run late. I didn’t find much documentation nor many examples of using output from a child job that runs on a hybrid worker, so I wanted to get this published to help others that go searching.