
Denny Cherry & Associates Consulting





Agenda

Poor resource organization in Azure

Lack of naming conventions

Inappropriate use of version control

Tedious, manual deployments

No/inconsistent key vault usage

Misunderstanding integration runtimes

Underutilizing parameterization

Lack of comments and documentation

No established pipeline design patterns



Resource 
Organization



Resource 
Organization

You need separate data factories and key vaults 
for each environment

Common containers for separation: 

• Resource Groups

• Subscriptions

• Tenants



Option 1: Separate Resource Groups

DevOps Organization

Subscription

AD 
Tenant

Dev RG

Dev Data 
Factory

Dev Key Vault

Test RG

Test Data 
Factory

Test Key Vault

Prod RG

Prod Data 
Factory

Prod Key Vault

DevOps Project

Dev Repo



Option 2: Separate Subscriptions

Prod SubscriptionTest Subscription

DevOps Organization

Dev Subscription

AD 
Tenant

Dev RG

Dev Data 
Factory

Dev Key Vault

Test RG

Test Data 
Factory

Test Key Vault

Prod RG

Prod Data 
Factory

Prod Key Vault

DevOps Project

Dev Repo



Naming 
Conventions



Naming 
Conventions

Azure resources

Data Factory artifacts 



Naming scopes and requirements

Naming components

Example naming convention: 

<resource type><workload/application><environment>

<resource type><workload/application><environment><Azure 
region><instance>



Managed identities assume the name of the resource

Non-unique resource names cause confusion with access 
management and PowerShell/CLI



Use abbreviations for artifact type: 

• PL – pipeline

• DS – dataset

• LS – linked service

• Pipelines should indicate what they do (copy, transform, 
execute SSIS)

• Datasets and linked service names should indicate type and 
subject of data





Version 
Control



Version 
Control

One project

One repo connected to development factory

Consequences for multiple repos

Connecting multiple factories to the same repo 
doesn’t work well



Permanent branches: main, integration

Developers should work in short-lived feature branches

After unit testing, developers merge to integration

After integration testing, pull request to main

Main should always contain code that is ready to be deployed to 
the next environment





Deployment



Deployment

Copy JSON files

ARM template

PowerShell/CLI

DevOps pipeline



Deployment can be manual or automated

Use global parameters to change values for different 
environments

Requires that all ADF artifacts be deployed each time

Requires that parameterized elements are exposed in template 
parameters



Azure DevOps and the Deploy Azure Data Factory by SQLPlayer
extension (free)

Use JSON files in designated branch in source control

Selective deployment

Config files stored as CSV

Choose whether to delete objects in target not in source





Key Vault



Key Vault

Centralized, more secure

Use the AKV linked service or a web activity to 
retrieve credentials

Keeps linked service from being immediately 
published, stays with branch 





Integration 
Runtimes



Integration 
Runtimes

Azure

Self-hosted

SSIS



Integration 
Runtimes

Needed with any private network (even in Azure)

Give it the cores, RAM, hard drive space it needs

Share IRs for lower environments to save costs

Size appropriately for concurrent workloads when 
sharing

Make sure appropriate libraries are installed and 
updated 



Integration 
Runtimes

Used for copy between cloud data stores and for 
data flows

Auto-scales based upon prescribed DIUs

Provision your Azure IR so you are sure of the 
region and avoid data egress charges

Be sure to set TTL when using data flows



Parameterization



Parameters

Global parameters

Pipeline parameters

Dataset parameters

Linked service parameters





Comments & 
Documentation



Documentation

Not possible to comment the json code behind pipelines

Built-in features to provide notes: 

• Pipeline description

• Activity description

• Linked service description

• Integration runtime description 

• Annotations 

• User properties



Documentation

Use the wiki in your DevOps project

Document large commits/releases



Design 
Patterns



Design 
Patterns

Pipeline hierarchies

Dependencies and error handling



Make your pipelines reusable to the extent practical

Common to have 3 – 4 layers of pipelines

Orchestrator

Executor

Worker

Utility



Ensure you have retries set to handle transient errors

Set timeouts so you don’t have activities stuck for days

Log errors in a way that makes the info easily usable – send data 
to Log Analytics and/or another database

Understand when a pipeline fails and plan notifications 
accordingly



Final 
Comments



Azure Cloud Adoption Framework: https://docs.microsoft.com/en-us/azure/cloud-
adoption-framework/ready/azure-best-practices/resource-naming

Data Factory naming convention: https://erwindekreuk.com/2019/04/azure-data-
factory-naming-conventions/

Pipeline hierarchies: https://mrpaulandrew.com/2019/09/25/azure-data-factory-
pipeline-hierarchies-generation-control/

ADF tools from SQL Player: https://sqlplayer.net/adftools/

Activity failures and pipeline outcomes: https://datasavvy.me/2021/02/18/azure-
data-factory-activity-failures-and-pipeline-outcomes/

https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-naming
https://erwindekreuk.com/2019/04/azure-data-factory-naming-conventions/
https://mrpaulandrew.com/2019/09/25/azure-data-factory-pipeline-hierarchies-generation-control/
https://sqlplayer.net/adftools/
https://datasavvy.me/2021/02/18/azure-data-factory-activity-failures-and-pipeline-outcomes/



